
Query Processing and Optimization using Set Predicates….C.Saranya et al.,

470

International Journal of Technology and Engineering System (IJTES)
 Vol 7. No.5 2015 Pp. 470-477
©gopalax Journals, Singapore
available at : www.ijcns.com

ISSN: 0976-1345
--

Query Processing and Optimization Using Set Predicates
C.Saranya1, B.Kamala2
1PG Student, 2Assistant Professor

1,2Department of Computer Application, Sri Sai Ram Engineering College, Chennai.

ABSTRACT
The SQL is extended with set predicates for an important class of analytical queries, which
otherwise would be difficult to write and optimize. It is designed in two query evaluation
approaches for set predicates, including an aggregate function-based approach and a bitmap index-
based approach. Observing the demand for complex and dynamic set level comparisons in database,
so the concept of set predicates is used. The experiment is verified for its accuracy and effectiveness
in optimizing queries.

Key Terms-Set predicates, grouping, data warehousing, OLAP, querying processing and
optimization.

I. Introduction

In modernization of technological era, the
amount of quality of the businesses in many
application domains. In data has been
exploding in many application domains. For
instance, A Course Reference Number (CRN)
is a unique identifier assigned to a specific
class section at an educational institution. This
is in contrast to a course number, which
follows other conventions and is used to refer
to the course itself, instead of a specific section
of the course. They needs to retain long-term
active data or even permanent are increasing.
Data are accumulated and transformed to big
dataset before they can be stored in a database.
Big datasets can cause overhead to database
performance issues. There is a high demand of
querying data with the semantics of set level
comparisons. Database performance is a
crucial issue, which can decrease the ability of

the DBMS to respond to queries quickly. Poor
database performance cause negative
consequences such as in financial, productivity
and quality of the businesses in many
application domains. Observing the demand
for complex and dynamic set level
comparisons in databases, we propose a
concept of set predicate.

II. Related Work

Set-valued attributes provide a concise and
natural way to model complex data concepts
such as sets. Many DBMSs nowadays support
the definition of attributes involving a set of
values, for example, nested table in Oracle and
SET data type in MySQL. For example, the
“skill” attribute in Example 1 can be defined as
a set data type. Set operations can be natively
supported on such attributes. Query processing
on set-valued attributes and set containment

Query Processing and Optimization using Set Predicates….C.Saranya et al.,

471

joins have been extensively studied [14]
Although set-valued attributes together with
set containment joins can support set-level
comparisons, set predicates have several
critical advantages:

1. Unlike set-valued attributes, which bring
hassles in redesigning database storage for
the special set data type, set predicates
require no change in data representation
and storage, and thus can be incorporated
into standard RDBMS.

2. In real-world applications, groups and
corresponding sets are often dynamically
formed according to query needs. For
instance Example 2, the monthly ratings of
each department form a set. In a different
query, sets may be formed by ratings of
individual employees. With set predicates,
users can dynamically form set-level
comparisons with no limitation caused by
database schema. On the contrary, set-
valued attributes cannot support dynamic
set formation because they are predefined
at schema definition phase and set-level
comparisons can only be issued on such
attributes.

3. Set predicates allow cross-attribute set-
level comparison. For instance, sets are
defined over advertiser and CTR together
in Example 3. On the contrary, a set-valued
attribute can only be defined on a single
attribute in many implementations, thus
cannot capture cross-attribute associations.
Implementations such as nested table in
Oracle allow sets over multiple attributes
but do not easily support set- level
comparisons on such attributes. Set
predicate is also related to universal
quantification and relational division [12],
which are powerful for analyzing many-to-
many relationships. An example universal
quantification query is to find the students
that have taken all computer science
courses required to graduate. It is a special
type of set predicates with CONTAIN

operator over all the values of an attribute
in a table, for example, Courses. By
contrast, the proposed set predicates allow
sets to be dynamically formed through
GROUP BY and support CONTAINED
BY and QUAL, in addition to CONTAIN.
The SEQUEL 2 language (an extension of
the original SEQUEL) for SYSTEM R
proposed a special SET function, for
comparing a set of attribute values with the
result of a subquery [4]. The proposed
comparison operators include CONTAINS,
=, and their negations. Furthermore, these
operators can be used in comparing the
results of two.

III. III. EXISTING SYSTEM

The semantics of set-level comparisons in
many cases can be expressed using current
SQL syntax without the proposed extension.
However, resulting queries would be more
complex than necessary. One consequence is
that complex queries are difficult for users to
formulate. More importantly, such complex
queries are difficult for DBMS to optimize,
leading to unnecessarily costly evaluation. The
resulting query plans could involve multiple
sub queries with grouping and set operations.

Disadvantage:
 Queries are generate without any

conditions.
 It needs lengthy queries , so it seems to

be a complex task.
 Wastage of resource.

 Retrieval is complex

IV. Proposed System

The proposed concise syntax of set predicates
enables direct expression of set-level
comparisons in SQL, which not only makes
query formulation simple but also facilitates
efficient support of such queries. We
developed two approaches to process set
predicates: Aggregate function and Bitmap

Query Processing and Optimization using Set Predicates….C.Saranya et al.,

472

index-based approach. Finally, we developed a
histogram-based probabilistic method to
estimate the selectivity of a set predicate.

Set Predicates in SQL

Fig.1. Predicate Architecture

Set Predicates
The SQL syntax is to support set

predicates. Since a set predicate compares a
group of tuples to a set of values, it fits well
into GROUP BY and HAVING clauses.
Specifically, in a HAVING clause there is a
Boolean expression over multiple regular
aggregate predicates and set predicates,
connected by logic operators ANDs, ORs, and
NOTs. The syntax of a set predicate is

SET(v1;...;vm) CONTAIN j
CONTAINED BY j EQUAL fðv1 1;...;v1
mÞ;...;ðvn 1;...;vn mÞg, where vj i 2 DomðviÞ,
i.e., each vj i is a literal value (integer, floating
point number, etc.) in the domain of attribute
vi. Succinctly, we denote a set predicate by
ðv1;...;vmÞ op fðv1 1;...;v1 mÞ;...;ðvn 1;...;vn
mÞg, where op can be ; , and =, corresponding
to set operator CONTAIN, CONTAINED BY,

and EQUAL, respectively. The architecture
includes some modules:

 CRN’s Creation
 Set predicates

 Query Evaluation approach
 Aggregate Function

 Bitmap Index
 Histogram based Probabilistic Method

 Statistics

Module Description:

1. CRN’s Creation
A course reference number usually refers to a
specific section of a course, rather than the
whole course itself. Often, large classes with
several hundred students are divided into
smaller classes of 20 or 30; these smaller
sections are indicated by course reference
numbers, usually five digits long. Different
colleges display course reference numbers in
different places

2. Set Predicates
We extend SQL syntax to support set
predicates. Since a set predicate compares a
group of tuples to a set of values, it fits well
into GROUP BY and HAVING clauses.
Specifically, in a HAVING clause there is a
Boolean expression over multiple regular
aggregate predicates and set predicates,
connected by logic operators ANDs, ORs, and
NOTs.

General queries are:
i. Multi attribute Grouping
When several column names occur in a
GROUP BY clause, the result table is divided
into groups within groups. For example, if you
specify column names for year, region, and
district in the GROUP BY clause.

ii. Multi attribute Set Predicate

Query Processing and Optimization using Set Predicates….C.Saranya et al.,

473

The query syntax also allows comparing
sets defined on multiple attributes. They
clauses are:

a. In
It determines whether a specified value
matches any value in a list.

b. Contains
It is similar to the free text but with the
difference that it take one keyword to match
with the record. If you want to combine
another word you can use AND, OROperator.

c. Free text
FFree text is a predicate used to search
columns containing character based data type.
It will not match exact word but the meaning
of the words in the search condition.

d. Multi predicate Set Operation
A query with multiple set predicates can be
supported by using Boolean Operators .i.e.
AND, OR and NOT.

e. Aggregate Expression
Built-in aggregates are aggregate functions
that are defined by the database server, such as
AVG, SUM, and COUNT. These aggregates
work only with built-in data types, such as
INTEGER and FLOAT.

3. Query Evaluation approach
i. Aggregate Function based approach:
With the new syntax which brings forward the
semantics of set predicates, a set predicate-
aware query plan could potentially be much
more efficient by just scanning a table and
processing its tuples sequentially. The key to
such a direct approach is to perform grouping
and set-level comparison together, through a
one-pass iteration of tuples. The idea
resembles how regular aggregate functions can
be processed together with grouping. Hence,
we design a method that handles set predicates
as aggregate functions.

ii. Bitmap Index based approach:
The bitmap index-based approach only needs
bitmap indices on individual attributes. Based
on single-attribute indices the simple data
format and bitmap operations make it
convenient to integrate various operations in a
query, including dynamic grouping of tuples
and set-level comparisons.

4. Histogram based Probabilistic Model
A histogram measures the frequency of
occurrence for each distinct value in a data set.
The query optimizer computes a histogram on
the column values in the first key column of
the statistics object, selecting the column
values by statistically sampling the rows or by
performing a full scan of all rows in the table
or view. If the histogram is created from a
sampled set of rows, the stored totals for
number of rows and number of distinct values
are estimates and do not need to be whole
integers

The Histogram Steps are:

RANGE_HI_KEY
It displays the upper bound value of a
histogram step.

RANGE_ROWS
It displays the number of rows from the sample
that fall within a histogram step, excluding the
upper bound.

EQ_ROWS
It displays the number of rows from the sample
that are equal in value to the upper bound of
the histogram step.

DISTINCT_RANGE_ROWS
It displays the number of distinct values within
a histogram step, excluding the upper bound.

AVG_RANGE_ROWS
It displays the average number of duplicate
values within a histogram step, excluding the
upper bound value (RANGE_ROWS /

Query Processing and Optimization using Set Predicates….C.Saranya et al.,

474

DISTINCT_RANGE_ROWS for
DISTINCT_RANGE_ROWS > 0).

5. Statistics
Statistics can be collected by examining every
row in the table or by sampling a large table.
When sampling was used, or when statistics
are out of date, the statistics presented in the
page may not reflect the exact state of the
table. The statistics displayed are read-only.
This information is used by the query
optimizer to create the best possible query
plan.

Options:

Table Name
It displays the name of the table described by
the statistics.

Statistics Name
It displays the name of the database object
where the statistics are stored. Statistics
unrelated to an index which were created
automatically by Microsoft SQL Server have
names beginning with _WA_Sys.

Statistics for
It displays the name of the statistics object.

Updated
It displays the date the current statistics were
created.

Rows
It displays the number of rows in the table.

Rows Sampled
Displays the number of rows examined to
create the statistics.

Steps
The rows of the table are split into groups for
the statistics histogram. This is the number of
groups that were created.

Density

An index that has a large number of duplicates
has high density. A unique index has low
density.

Average Key Length
It displays the average length of each row.

String Index
Yes indicates that the statistics contain a string
summary index to support estimation of result
set sizes for LIKE conditions.

Data for Columns:

All Density
It displays the density for the combination of
columns listed in the Columns section.

Average Length
It displays the average length of the
combination of columns listed in the Columns
section.

 Columns
It displays the columns described by the All
Density and the Average Length fields.

V. Implementation and Result

The conducted experiments on both query
processing algorithms and query optimization
techniques and compared the performance of
three methods in evaluating set-level
comparisons the aggregate function-based
method, the bitmap index-based method, and
the method of using regular SQL queries. They
are compared on three different data sets, the
own synthetic data, for studying the effect of
various parameters in the performance of these
methods, including the number of tuples, the
number of groups, the number of values in a
set predicate, the number of qualified groups,
and so on; 2) for studying the performance of
these methods on general queries with join
conditions and on benchmark data capturing
the characteristics of decision support
applications; 3) World- Cup98 data set
(Section 9.2.3), for evaluating the performance

Query Processing and Optimization using Set Predicates….C.Saranya et al.,

475

of the methods on real and big data. The
aggregate function-based method, denoted as
Agg, is implemented in C++. The bitmap
index-based method, denoted as Bitmap, is
also implemented in C++ and leverages
FastBit4 for BSI implementation. The method
of using regular SQL to express set-level
comparisons is denoted as Rewrite.
PostgreSQL is used to store data and execute
regular SQL queries. In the supplemental
materials, available online, to this paper, it
describes how to rewrite queries with set
predicate into regular SQL. It is not a complete
enumeration of all possible query rewritings
because in practice there will be infinite
possible rewritings. This was done by
manually investigating alternative queries and
plans and turning on/off various physical query
operators. Nevertheless, the queries we often
used for CONTAINED BY are in the form of
the rewriting in Fig. 2. For a CONTAIN
predicate with m values, we often used a query
that intersects the results of m selection queries
on the individual values. This rewriting
approach can be found in the supplemental
materials, available online, to this paper.
Moreover, the query plans resulting from
regular SQL queries discussed in Section 4
ultimately perform one-pass grouping and
aggregation upon the results of (multiple) other
upstream operations. Therefore the
performance of Agg, which is also
implemented externally, serves as a yardstick
in comparison with the performance of
Bitmap. Hence, the results verify that using
regular SQL queries obscures the semantics of
set-level comparisons and leads to costly
plans. The results could encourage vendors to
incorporate the proposed approaches into a
database engine.

Fig.2.CourseAddition

Fig.3. Course Registration

Fig.4. Viewing Staff Details

Query Processing and Optimization using Set Predicates….C.Saranya et al.,

476

Fig.5 Changing password for login

VI. Conclusion

It is proposed to extend SQL by set predicates
to support set-level comparisons. Such
predicates, combined with grouping, allow
selection of dynamically formed groups by
comparison between a group and a set of
values. The two evaluation methods are
presented to process set predicates.
Comprehensive experiments on synthetic and
TPC- H data show the effectiveness of both the
aggregate function-based approach and the
bitmap index-based approach. For optimizing
multi predicate queries, a histogram-based
probabilistic method iscreated to estimate the
selectivity of set predicates. The estimation
governs the evaluation order of multiple
predicates, producing efficient query plans

VII. References
1. “Jaql: Query Language for Javascript

Object Notation
(Json),”http://code.google.com/p/jaql/,
2013.

2. G. Antoshenkov, “Byte-Aligned Bitmap
Compression,” Proc. Conf. Data
Compression, 1995.

3. M. Arlitt and T. Jin, “A Workload
Characterization Study of the 1998 World
Cup Web Site,” IEEE Network, vol. 14,
no. 3, pp. 30-37, May/June 2000.

4. Chamberlin, M. Astrahan, K. Eswaran, P.
Griffiths, R. Lorie, J. Mehl, P. Reisner, and
B. Wade, “Sequel 2: A Unified Approach
to Data Definition, Manipulation, and
Control,” IBM J. R & D, vol. 20, no. 6, pp.
560-575, 1976.

5. C.Y. Chan and Y.E. Ioannidis, “An
Efficient Bitmap Encoding Scheme for
Selection Queries,” Proc. ACM SIGMOD
Int’l Conf. Management of Data, 1999.

6. A.K. Chandra and P.M. Merlin, “Optimal
Implementation of Conjunctive Queries in
Relational Data Bases,” Proc. Ninth Ann.
ACM Symp. Theory of Computing
(STOC), 1977.

7. Chatziantoniou, “Using Grouping
Variables to Express Com- plex Decision
Support Queries,” Data Knowledge Eng.,
vol. 61, no. 1, pp. 114-136, 2007.D.
Chatziantoniou and K.A. Ross, “Querying
Multiple Features of Groups in Relational
Databases,” Proc. Int’l Conf. Very Large
Databases (VLDB), pp. 295-306, 1996.

8. Chatziantoniou and K.A. Ross,
“Groupwise Processing of Relational
Queries,” Proc. 23rd Int’l Conf. Very
Large Databases (VLDB), pp. 476-485,
1997.

9. D. Chatziantoniou and E. Tzortzakakis,
“Asset Queries: A Declarative Alternative
to Mapreduce,” ACM SIGMOD Record,
vol. 38, no. 2, pp. 35-41, Oct. 2009.

10. R. Elmasri and S. Navathe, Fundamentals
of Database Systems. Addison-Wesley,
2011.

Query Processing and Optimization using Set Predicates….C.Saranya et al.,

477

11. Graefe and R.L. Cole, “Fast Algorithms for
Universal Quantification in Large
Databases,” ACM Trans. Database
Systems, vol. 20, no. 2, pp. 187-236, 1995

12. [12] J.M. Hellerstein and M. Stonebraker,
“Predicate Migration: Optimizing Queries
with Expensive Predicates,” Proc. ACM
SIGMOD Int’l Conf. Management of Data,
pp. 267-276, 1993.

13. S. Helmer and G. Moerkotte, “Evaluation
of Main Memory Join Algorithms for Joins
with Set Comparison Join Predicates,”
Proc. Int’l Conf. Very Large Databases
(VLDB), 1996.

14. Y. Ioannidis, “The History of Histograms
(Abridged),” Proc. Int’l Conf. Very Large
Databases (VLDB), 2003.

Query Processing and Optimization using Set Predicates….C.Saranya et al.,

478

